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Mechanics of ship capsize under direct and
parametric wave excitation

By J. M. T. THompsonN, R. C. T. RAINEYT AND M. S. SOLIMAN

Centre for Nonlinear Dynamics and its Applications, Cwil Engineering Building,
Universily College London, Gower Street, London WCI1E 6BT, UK.

The equations of motion of a ship that is simultaneously heaving, swaying and rolling
in waves are derived from first principles in a manner that allows considerable
generalization of the sea-state, and offers a systematic approximation of the
hydrodynamic pressures by an expansion of the velocity potential in circular
harmonics. Assumption of static balance in heave reduces the problem to a single roll
equation with both direct and parametric excitation, the latter multiplying the
conventional GZ restoring function. Numerical steady-state and transient studies of
an archetypal biased boat confirm that our earlier conclusions, about basin erosion
and the importance of transient capsize, are preserved under realistic magnitudes of
parametric excitation.
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1. Introduction
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The new geometrical phase space techniques of nonlinear dynamics have much to
offer the naval architect in his studies of ship dynamics and capsize. In particular it
appears that they can be used to establish suitably brief and searching test
procedures both for physical model tests and for computational studies. In ship
manoeuvring, naval architects have indeed long recognized the usefulness of
standard tests such as the ‘Dieudonné spiral’ and the ‘overshoot and zig-zag test’
(see, for example, Lewis 1989). We feel that some similar tests are long overdue for
the stability of boats against capsize, and the validity of some of our earlier proposals
for an ‘index of capsizability ’ based on transient testing is strongly supported by the
present work.

A boat in waves is adequately modelled as a rigid body with its six degrees of
freedom. Under the beam-sea excitation that is of primary concern here, these can
be reduced to the three planar coordinates: while the static balance of the
conventional GZ approximation reduces the problem to a highly nonlinear one with
a single active generalized coordinate. It is precisely for such intrinsically low-
dimensional systems that dynamical systems theory can offer its most immediate
advantages (Thompson & Stewart 1986).

Our earlier careful studies of an archetypal capsize model (Thompson et al. 1990)
have indeed already highlighted the new phenomenon of sudden basin erosion by
incursive fractals. These show that transient capsize is not only important, but also
more predictable than had been previously supposed: allowing fairly precise and
logical ideas of a tramsient capsize diagram, and an index of capsizability to be
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formulated (Rainey & Thompson 1991). Examination of transients was shown to be
conceptually simpler, yet more realistic, than steady-state studies.

Emphasis on transient conditions is therefore a useful paradigm shift in capsize
studies, and allows sensible strategies to be mapped out for the very expensive
investigations that have to be undertaken by either physical model testing or
computer simulation. The latest and most comprehensive experimental (Gro-
chowalski 1989) and computational (De Kat & Paulling 1989) capsize studies
certainly point to the urgent need for such brief but searching procedures. Our
suggestion that models should be subjected to a short ‘worst-case’ pulse of regular
waves close to the natural roll frequency, rather than long-term stochastic forcing,
could for example be a great saver of time and money: especially since the latter
often produces no capsize at all (see, for example, Morrall 1981).

In this paper we make a new derivation, from first principles, of an archetypal
equation for ship capsize studies. Coupled equations of heave, sway and roll are
derived using the Froude—Krilov assumption that the wave pressures are not
disturbed by the boat. The acceleration of coordinate axes tied to a circling water
particle gives an effective gravitational field g, perpendicular to the wave surface.
The first approximation presented in the main text assumes this surface to be locally
straight, above a uniform pressure gradient equal to pg,. In the Appendix, expansion
of the velocity potential in circular harmonics points the way to a systematic
improvement of this approximation. This improvement throws light on the curious
lack of direct heave resonance, and allows a discussion of different hull forms,
showing for example that the direct forcing term of the first-order canonical equation
is exact for a box-shaped hull with a 2:1 aspect ratio.

The assumption of static balance in heave leads to a single roll equation which
contains implicitly a slave variation (independent of g,) of the heave coordinate. This
archetypal equation in the roll angle relative to the wave normal includes both direct
forcing (deriving from the rotational acceleration of the wave normal) and parametric
excitation (generated by the fluctuating gravitational field). It is particularly
valuable because it only involves the conventional (/Z function which is the only hull
property that routinely appears in the naval literature. This function quantifies the
roll response under a pure disturbing moment applied slowly to the boat in still
water, during which the static balance is exactly realized, and the passive heave is
a major contributor to the potential energy increase of the boat and water.

To assist the reader, the main text presents first the special case of linear surface
waves on deep water, before generalizing the derivation to more complex waves,
which might typically be in shallow water, oblique to the boat, or indeed nonlinear.
In this generalization the forcing magnitudes are expressed in terms of the horizontal
and vertical particle accelerations, allowing their absolute, as well as their relative
values, to be assessed.

For numerical studies the effective GZ curve of a biased boat is approximated as
a quadratic function and related to the escape from a cubic potential well under
horizontal and vertical excitation. The archetypal capsize equation, its generalization
in §2.7 and its systematic improvements in the Appendix, all have the direct and
parametric forcing separated by a 90° phase shift. This is relaxed in some of the
computations to explore more general escape and capsize scenarios, revealing an
interesting suppression of escape under one form of synchronized forcing.

In these numerical studies we first explore the steady-state response, and the
governing bifurcations, in the region of the primary roll resonance. These local

Phil. Trans. R. Soc. Lond. A (1992)
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bifurcations include the saddle-node folds that give the jumps to and from resonance
at the extremities of a hysteresis cycle: the super-critical flip to a subharmonic
motion of order two that signals the start of a period-doubling cascade to chaos: and
the boundary crisis at which the chaotic attractor finally loses its stability. The
bifurcation arcs are drawn in the control space spanned by the magnitudes of the
direct and parametric forcing, allowing regions of inevitable capsize to be identified.
The unfolding of the transcritical bifurcation encountered under pure parametric
excitation serves to organize the diagram, and the subtleties of the indeterminate
jumps to resonance are outlined. The inclusion of the parametric forcing means that
a biased boat is no longer insensitive to the direction of propagation of beam waves.

Basin erosion studies are made at a relatively high ratio of parametric to direct
excitation. This would correspond to a fairly extreme extrapolation of our beam-sea
study to a boat almost head-to-sea in very oblique waves, close to the archetypal
‘survival mode’ for a storm in which the master heads the boat as closely as possible
into the waves. The sharp premature loss of the safe basin is still observed under
these conditions. So our earlier conclusions about premature, yet predictable,
transient capsize are preserved over a wide range of direct plus parametric excitation
for critical encounter frequencies close to the roll natural frequency.

2. Derivation of the equations of motion

In this section we derive the equations of motion of a vessel in long beam seas,
paying special attention to the coupling action between heave and roll. We are
particularly interested in large angles of roll, including, for example, capsize, and are
therefore forced to approximate, since the full equations of motion of a vessel, valid
for such large motions, are prohibitively complicated. We adopt the standard
‘Froude—Krilov’ approximation, in which the vessel is assumed not to disturb the
water pressure in the waves, but follow it with greater rigour than is customary,
identifying first those forces traceable to the spatially invariant (but time varying)
part of the pressure gradient, and then (in the Appendix) those forces traceable to its
spatial variations. Hydrodynamic forces due to motion of the boat relative to the
waves are not considered, so empirical terms must be added to the final equation to
incorporate the added hydrodynamic mass and the hydrodynamic damping.

2.1. Equations of heave, roll and sway in calm water

Consider first a boat of mass m, moving as a rigid body in calm water with three
planar degrees of freedom as shown in figure 1. In the fixed inertial reference frame
shown, the centre of gravity of the boat, ¢, has sway, «, and heave, y, and the roll
angle relative to the vertical is 6.

The archimedian upthrust, Rg, equal and opposite to the weight of water
displaced, acts vertically through the centre of buoyancy, B. It can be written in
terms of W, the volume of water displaced, as

R(y,0)g = pgW(y.0), (1)

where ¢ is the gravitational constant and p is the density of the water. We recognize
that R and W are functions of ¥ and 6, but not of x. The restoring moment about @,
provided by R, can be written in terms of the horizontal distance G'Z as

M(y.0)g = R(y,0)9GZ(y, 0). (2)
Phil. Trans. R. Soc. Lond. A (1992)
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R(y, 0) g

Figure 1. The heave, roll and sway of a boat: (¢) in calm water; (b) in a wave. The mechanics
of a linear surface wave on deep water are summarized in (c).

The equation of sway motion is given trivially by
mx” =0, (3)

implying that under these hydrostatic forces ¢ would remain on a fixed vertical line,
while the coupled equations of heave and roll are

my” +mg—R(y,0)g =0, (4)
10" +M(y,0)g = 0. (5)

Here a prime denotes differentiation with respect to time, and / is the moment of
inertia of the boat about its centre of gravity.

Because the system comprising the boat and ocean is manifestly a conservative
mechanical system, the coupled restoring functions are derivable from a potential
function. Indeed the internal consistencies of an energy approach make it an
attractive analytical tool in deriving the functions for a prescribed hull form. The
energy formulation is also invaluable in showing that capsize, in the presence of
heaving motions, is entirely analogous to the escape from a two-dimensional
potential well corresponding to V(y,0).

In general terms, the energy formulation proceeds as follows. In an infinite ocean,
the volume of water W(y, 0) is effectively displaced from its centre of gravity, B, at
depth S(y, 0), to the surface. So the potential energy of the water is

Uly,0) = pgW(y.0) Sy, 0) (6)
and the total potential energy of the system, boat plus water, is
V(y,0) = mgy+U(y. 0). (7)

Phil. Trans. R. Soc. Lond. A (1992)
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The two restoring functions of (4) and (5) are derivable from V, so the equations can
be written formally as
my” +0V /0y = 0, (8)

10" +23V /260 = 0. 9)

Notice that it is the vertical movements of the boat and displaced water that provide
the restoring moment: the work done in slowly rolling a boat is stored as potential
energy of boat and water.

2.2. The GZ approximation in calm water

To simplify the coupled heave and roll equations, (4) and (5) of our vectorial
derivation, we can assume that we always have vertical static balance by setting
y” = 0. This is often a good approximation because the heave natural frequency is
usually high in comparison with the roll natural frequency : so the heave coordinate
can respond quickly to the slower changes in the roll angle, making it a passive slave
variable.

Setting ¥” = 0 in the heave equation, (4), gives us

m = Ry, 0), (10)
which we can in principle solve to find the slave relation

Y =y,(0). (11)

The fact that g does not appear in (10) and (11) means that this slave relation will
be preserved unchanged when, in our later analysis, a boat in waves experiences a
varying effective gravitational field.

Substituting (11) into the roll equation, (5), and writing

my@.(0) = Mly,(0), 019 = mgGZ1y,(0), 0], (12)
we have finally the one-degree-of-freedom ((7,) approximation,
10" +mg@ ,(0) = 0. (13)

In using this single roll equation we should always remember that it implies a hidden
slave variation of the heave coordinate ¥ to maintain a constant immersed volume
W(y, ) = m/p. This passive heave of ( is in no way a small correction, but is a major
contributor to the form of G,(0) through the substitution of y(f) in (12). In a
vertical-sided vessel, for example, the distance from G to the water surface, measured
along the vessel’s plane of symmetry, must clearly remain constant, implying a co-
sinusoidal rise of @ as the boat rolls (a pendulum-like motion, but with no horizontal
movement of @). As we have remarked, it is the potential energy of boat and water
that generates the restoring mcment.

The function G,(0) is the ‘GZ characteristic’ of the naval literature, and is
numerically equal to the distance GZ of figure 1a, as we can see in equation (12). But
we prefer to introduce a distinctive symbol to emphasize the functional relations
involved. In a static test of a ship or model, mg@,(0), would be the pure overturning
moment that would be recorded as producing a roll angle of magnitude 6.

2.3. Surface waves and the effective gravitational field

Before we proceed to our formulation of boat dynamics in waves, we summarize
here some well-known results from the linear theory of surface waves on deep water.

Phil. Trans. RB. Soc. Lond. A (1992)
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Figure 1¢ shows a sinusoidal surface wave travelling from left to right, the wave
height at distance z and time 7 being

7= Acos(kz—aw;T) (14)

in terms of the wave height A (24 from crest to trough) and the two independent
kinematic parameters, the wave frequency, w;, and the wavenumber, k. The wave
slope is

N,(2,7) = —Aksin (kz—w; T) (15)

and evaluated at z = 0, where our attention will be focused,
7,(0,7) = Ak sinw; 7. (16)
By definition, the wave period, 7', the wave length, A, and the wave velocity, ¢, are
T = 2n/wy, (17)
A=2n/k, (18)
c=AT = w/k. (19)

Finally the hydrodynamic theory of linear waves on deep water gives us the dispersal
relation
wf = gk. (20)

This hydrodynamic result leaves us with just one independent parameter: and we
notice that longer waves travel faster.

Now a water particle on the surface stays on the surface, and describes the circle
shown. In visualizing this we can imagine a bead rotating around the circle as a wire
with the shape 4 cos ks is pulled through it with velocity c. Notice that because the
wave is assumed to be shallow, all points on the circle can be deemed to have the
coordinate z = 0.

The centrifugal acceleration of this water particle can be combined vectorially
with g to give an effective g, at the angle g, as shown. Then assuming that v} 4 < ¢
we have

B (of Asino;1)/g = 17,0, 7), (21)

which proves that at any instant of time the effective gravitational force is
perpendicular to the water surface.

2.4. Equations of heave, roll and sway in a wave

The approach of this heuristic study is to assume that we have a small boat that
tracks around the circle of figure 1 ¢ with the water particle. In doing so it experiences
a fluctuating gravitational field that is always perpendicular to the water surface. As
a coordinate frame we use the non-rotating axes (x,y), whose origin is tied to the
water particle: in such a frame the dynamics will be normal, provided that we
recognize the existence of the rotating gravitation field. We shall want to write the
buoyancy forces in terms of the rocking axes (u,v), which are always aligned with
the water surface: but a dynamic analysis in this frame would be inconvenient due
to the large number of extraneous dynamical forces (coriolis, ete.) that would have
to be introduced.

We assume that the wave is uninfluenced by the presence of the boat, and in the
first instance assume also that the surface can be taken as straight in the vicinity of
the boat, with the pressure increasing linearly with distance from it, according to the

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

/,//’ \\
J

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

L2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Mechanics of ship capsize 477

current effective g,. This latter assumption follows from the smallness of the boat’s
cross-section relative to the wave. In the Appendix, we refine our treatment by
considering systematically the limiting case of a small boat, and identifying the
leading-order terms in the force and moment on it.

Figure 1b shows the boat displaced relative to the wave surface, with the
coordinate axes displaced to the side for clarity. The normal to the wave surface is
inclined at the angle ¢ to the vertical, and 6 measures the relative roll.

Relative to the wave, the geometry of this diagram is identical to that of figure 1a,
with the distance from @ to the surface now appearing as v rather than y. We
conclude that with just the change in variable from ¥ to », and the change in gravity
from g to the time-varying g,, the upthrust function R and consequently the moment
function M are unchanged from the calm water analysis.

From our previous examination of surface waves we can write immediately

¢=—9,=—Aksinw,7, (22)
¢ = Akofsinw, 7, (23)
Jo X g—wiA cosw;T, (24)
and in the (x,y) frame the equations of translation of the boat are
ma” +[m—R(v,0)]g.(r)sin$ = 0, (25)
my” +[m—R(v,0)]g.(1) cos¢p = 0, (26)
whereas the rotational equation
1(@"+6")+M(v,0)g.(1) =0 (27)
becomes on using (23)
10" +M(v,0)g.(1) = —I4kw? sin w, 7. (28)

These equations involving a mixture of (z, y) and (u, v) coordinates are not suitable
for immediate use, but allow us to proceed to a one-degree-of-freedom simplification
along the lines of the calm water analysis.

2.5. The GZ approximation in waves

Static balance is achieved simultaneously in the 2 and y directions by setting
m = R(v,0), in equations (25) and (26). Notice that since the effective gravity
influences the boat and water equally, this static balance condition, and the resulting
slave relation

v, = v,(0) (29)

are exactly the same as in the calm water analysis. Substituting (29) into (28) gives
10" +M(vy(0),0]go(1) = —IAkw? sinw, 7 (30)

and finally, using (24), we have the one-degree-of-freedom equation of rolling motion
16" +mgQ,(0)[1 — (0 A/g) cos w; 7] = — [Akw? sin w, 7. (31)

A valuable generalization of these equations is given in §2.7 as equations (30a) and
(31a). The equations have direct rolling excitation on the right-hand side, and
parametric forcing on the left. The formulation is particularly useful because it only
involves the known calm-water (Z,(f) function that appeared in (13): this is the only
hull property that routinely appears in the naval literature.

Phil. Trans. R. Soc. Lond. A (1992)
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2.6. Canonical roll equation with parametric excitation

To tie in with our earlier studies of direct excitation, we now adopt the simplest
possible restoring moment; assuming, as appropriate for a generic and worst case
analysis, that the boat is biased by wind, ice or cargo imbalance. With 0 now
measured from the (positive) tilted equilibrium state, we write the total effective
restoring moment, comprising the original (/Z characteristic plus the biasing
moments, as

mg0(0) = cO[1—(0/0,)], (32)

where ¢ is the linear stiffness and 0, is the angle at which the moment vanishes, the
‘angle of vanishing stability ’. Notice that this quadratic restoring function implies
that the biasing acts so strongly towards positive ¢ that there is no possibility of
capsize in the negative 6 direction : this is physically reasonable for a vessel subjected
to lateral wind loading.

The natural frequency of the boat, in the real time 7, is w,,, with 0% = ¢/I. We now
scale the time so that w, 7 = ¢, using a dot to denote differentiation with respect to
t, and scale the angle so that 0/0, = x. This notation agrees with our previously
published work, and it is felt that there can be no possible confusion between this
and the one used in earlier sections as a coordinate axis. Defining also the new
parameters

w = w/o,, (33)
F= ——A/cw2/0v, (34)
G=—Awl/g = (35)

the final canonical equation of motion is
E+pi+a(l—x) |1+ G coswt] = Fsinwt. (36)

Here we have inserted an arbitrary linear damping term with coefficient p,
corresponding to a damping ratio of {=4f. This equation is preserved in our
generalized analysis of §2.7, subject to (34) and (35) being replaced by (34¢) and
(35a) of that section. The ratio of the forcing magnitudes in (36) is

G/F =0,]w. (37)

The angle of vanishing stability, 0, will be of the order of one radian, and if we are
studying primary resonance the frequency ratio o of (33) will be of order unity. So
we conclude that G and F will be of the same order of magnitude. Their absolute
magnitudes are discussed in the last paragraph of §2.7.

2.7. Generalization to nonlinear, oblique and shallow-water waves

The above analysis has been restricted to linear waves on deep water for simplicity
of presentation, but in fact the argument is much more general. This is because the
key result is that established at the end of §2.3, namely that the effective
gravitational force vector, g,, is perpendicular to the water surface. 1t is this which
allows the still-water hydrostatic arguments to be applied in §2.4, with the
magnitude of the vector, g,, replacing g.

That the effective gravitational force is perpendicular to the wave surface can,
however, be seen to be true in general, from first principles. This is because the water
surface is a constant-pressure contour (the pressure being atmospheric there), so the

Phil. Trans. R. Soc. Lond. A (1992)
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pressure gradient in the water must be normal to the surface. The fundamental Euler
equation of an ideal fluid (see, for example, Lighthill 1986, §3.3) equates the pressure
gradient to the particle acceleration, including gravity. So vector g,, which is related
by definition to the total particle acceleration, is always perpendicular to the water
surface, no matter how complex the wave.

Following the argument of §§2.4 and 2.5 for this more general case, we see that
equation (30) can be written more generally, using (12), as

10" +mg (1) G,(0) = I}, (30a)

where ¢.(7) is the magnitude of the effective gravity vector, and 7, is the wave slope.
Written in this very general way, the equation can be used for a wide variety of
waves, including steep, nonlinear ones.

Now thinking in terms of a generalization of the gravity vectors and particle
accelerations of figure 1¢ we can write some approximate equalities as follows.
Horizontal component of the particle acceleration & 4, sinw,7 ~ ¢7,. Vertical
component of the particle acceleration ~ 4, cosw;7 & g—g.(7). We can use these to
express the excitations in terms of the particle accelerations, to give us the
generalization of (31),

10" +mgG (01— (4,/g) cosw 7] = — (IA, 02/g) sin w; 7. (31a)

This can be reduced to the canonical form (36) by modifying the definitions of /" and
G as follows

F=A4,0%/90,, (34a)
G=4,/y, (35a)
giving G/F =A4,0,/4, v (37a)

The 90° phase difference between the direct and parametric excitation is seen to be
preserved in the generalization of (36). It follows from the 90° phase difference
between the components of the particle accelerations, which is a consequence of one
being in phase with the wave slope, and the other in phase with the wave elevation.

In linear deep-water waves the particle orbits are circular with 4, = 4, so that
(37a) degenerates to (37) implying that G//F is approximately unity as observed
earlier. However, the present more general treatment reveals the types of waves
which will produce other values for G//F.

First, for G/F to be less than unity, we require 4, to be larger than 4, implying
that the particle orbits are horizontally elongated ellipses. This situation arises in
shallow water.

Conversely, for G/F to be greater than unity we require the orbits to be vertically
elongated ellipses. This situation arises if the ship is not in beam waves, but in
oblique waves, so that an observer looking down the length of the hull would only
see a component of 4,. This second scenario is clearly less precise than the first,
because in oblique waves the ship will pitch as well as roll, introducing extra degrees
of freedom into the problem. However, the two cases do establish in broad outline the
scenario sketched in figure 2.

It remains to quantify the range of possible magnitudes for ¥ and ¢/, which for our
case of 0,/w* close to unity, can be seen to be approximately 4,/¢g and 4,/g
respectively. These are well known to be limited to about 0.5, with the important
proviso that once a wave breaks the horizontal acceleration on the vertical face just
beneath the crest can be much higher, typically 59 (New et al. 1985).
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Figure 2. Regions of the (¥, () control space corresponding to some generalized scenarios.

2.8. Source of excitation and lack of heave resonance

The parametric forcing derives from the fluctuating gravitational field experienced
by the boat and water as they follow the circular path of a water particle. Since the
time-varying g, effects the boat and water equally, it induces no pure heave response
and the slave, roll-induced heave, has the calm-water form y(0).

This lack of any heave resonance follows from the absence of ¢ from equation (10).
[t can be established most clearly by considering a symmetric boat floating in a
container that is given an up-down sinusoidal oscillation with no horizontal
translation. The hydrostatic pressures respond instantaneously to the sinusoidally
fluctuating g,, so the resultant force on any body will be just as needed to keep the
displaced water at rest in a coordinate frame tied to the container. So the
archimedian upthrust on a displaced volume, W, still acts through the centre of
gravity of W and has the magnitude pg, W. As far as the hydrostatic forces of our
present study are concerned, the equations of motion of the boat in the sinusoidally
elevated container are just those of the calm water analysis, (3), (4), (5) and (13), with
g replaced by g.(7). With no roll, the boat floats in equilibrium at its usual depth in
the water, y,(0): there is no heave relative to the container, and no pure heave
resonance can be excited. This analogy with a boat in a container does of course not
address the non-uniform pressure gradients that are examined more carefully in the
Appendix, where it emerges that in waves short enough to cause heave resonance
they will produce a heave excitation of the same order as the other terms in the heave
equation.

With our use of the relative angle ¢, which appears in the GZ restoring functions,
the direct forcing derives from the rotational acceleration of the wave surface.

Jontrasting this direct roll forcing with the lack of heave excitation gives us the
suspicion of a contradiction here. For if we were to consider a boat with two slender
parallel hulls (i.e. a catamaran), and apply the above heave argument to cach of them
individually, we would conclude that each would track the water surface, and thus
that there was no roll excitation ¥ on the catamaran as a whole. This paradox clearly
arises from treating two hulls of the catamaran separately, and recognizing a slight
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phase difference in the two heave forces. In doing so we are implicitly modelling the
pressure field to a higher degree of approximation than before. By introducing a
systematic approximation scheme, these and other anomalies are resolved in the
Appendix.

To examine the signs of the forcing terms we look again at figure 1¢c. At ¢ = 0 the
boat is on a crest, and g, is at a minimum. This is consistent with (36) with ¢ negative
as implied by (35). If the wave is propagating to the right, as in the analysis, then
one quarter of a cycle later, at ¢ = +n/2w, the surface will have its minimum
clockwise rotation, and the direct excitation will be minimum. This is consistent with
(36) with F negative as implied by (34).

If the direction of wave propagation is reversed, the sign of # will be reversed, but
not the sign of (. Notice that reversing # and ¢ simultaneously has no significance,
being just equivalent to a phase shift.

Now our bias implies clockwise capsize, so if this were due to wind, the wind would
be from the left. So we have the result, and useful memory aid, that wind and wave
travelling in the same direction implies that /" and G have the same sign: wind and
wave travelling in the opposite direction implies that # and G have the opposite sign.
The fact that a biased boat is no longer insensitive to the direction of propagation
of the beam waves is a new feature that arises once we include the parametric
excitation terms.

2.9. Analogy with a ball rolling in a potential well

[t is useful to relate capsize to the escape from a potential well. Suppose axes (x, y)
are tied to a cubic well, and their origin, ¢, is given prescribed sinusoidal
displacements relative to a fixed frame (X, Y). We write the displacements of the well
in the X and Y directions as

D, =—asinwt, (38)
D, = bcos (wt+). (39)
To an observer in the (x,y) frame the excitation forces on a mass m are
B, =—mD, = —maw?sin t, (40)
E,=—mbD, = mbw®cos (wt+ ). (41)

We consider a particle of mass m sliding without friction (or a small ball rolling with
negligible rotational inertia) under gravity, g, on the shallow curve given by

y = [*—32%)/g, (42)
for which we have the approximate equation of motion,
mi+ (mg—H,) y, = K, (44)
giving
F+ fai+ (x—a?) [1— (bw?/g) cos (wt+ )] = —aw? sin wt, (45)

where we have inserted an arbitrary viscous damping term.

If we set i = 0 we retrieve our canonical capsize equation (36) under the cos/sin
forcing with ' and ¢ of the same sign, and we observe that this corresponds to the
origin of the well, @, circling anti-clockwise on an ellipse. If we set iy = n we again
retrieve (36) under the cos/sin forcing with F and G now of opposite sign, and ¢
circling clockwise on an ellipse.
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Figure 3. Bifurcations governing the capsize of a biased boat under direct and parametric excitation,
based on equation (36) with § = 0.1 and w = 0.85. The dot screen indicates the area of no main-
sequence attractor. The hatching denotes escape under the slow evolution of the parameters from
the origin: the limits of indeterminacy, 7', are purely schematic.
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Because it gives rise to a new phenomenon of escape suppression, which might be
relevant to boats in cross seas, as discussed in §3.3, it will be of interest to explore
numerically the behaviour of the equation

F+pi+ (x—a?) [1 +GFsinwt] = Fsinwt. (46)
Notice that setting ¢ = in in (45) retrieves this sin/sin equation with # and G of
opposite sign, corresponding to ¢ translating on a line whose slope, b/a, is positive.

Setting ¥ = 31 retrieves this sin/sin equation with F and G of the same sign,
corresponding to ¢ translating on a line whose slope, —b/a, is negative.

3. Bifurcation diagrams and integrity curves

We present now some preliminary numerical studies of the canonical capsize
equation (36) and its sin/sin complement (46).

3.1. Steady-state capsize under direct and parametric forcing

The steady state response of (36) with # = 0.1 and w = 0.85 is summarized in figure
3. Starting at rest in the equilibrium condition F = ¢ = x = & = 0, the system under
slowly increasing ¥ and , say along a ray G = oF', will experience a response similar
to that of the inset, where x is stroboscopically sampled at the forcing frequency. Here
we have a jump to resonance at the saddle-node fold A forming a hysteresis cycle
with the jump from resonance at fold B. The resonant harmonic solution starts a
period-doubling cascade to chaos at the flip bifurcation C, and the resulting chaotic
attractor finally loses its stability at a crisis at E. This crisis can be approximately
located by the valuable new Birkhoff-signature technique described by McRobie
(1992). The main diagram showing the locus of these bifurcations is unchanged by a
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Figure 4. Schematic response surface of the transeritical bifurcation under parametric excitation
of magnitude & unfolded by the addition of direct excitation of magnitude F. The stable regime
of the n = 1 harmonic surface is indicated by the dot screen. The bifurcations on the surface project
into the (I, @) control space in the base plane. This bifurcation, and the neighbouring cusp §,
organize the fold arcs, A and B of figure 3. (Here BY identifies the front face.)

180° planar rotation, corresponding to the invariance of (36) under ', ¢ ~—F, —G':
and the superimposed boats and wells remind us of the physical excitations that
correspond to the two distinct quadrants.

Under pure parametric excitation, with /' = 0, the equilibrium state x = @ = 0 is
always a solution but exhibits the well-known Mathieu instability which here
corresponds to the trans-critical bifurcation sketched in figure 4. This is unfolded by
small ¥ as shown, the unfolding serving to organize the bifurcation diagram of figure
3. For a symmetric, unbiased vessel this transcritical bifurcation would of course be
replaced by a symmetric one, with the subsequent response exhibiting a symmetry-
breaking instability as is observed in the parametrically excited pendulum (Capecchi
& Bishop 1990).

In the dotted outer region of figure 3 there are no attractors of the main sequence,
so ignoring the highly localized attractors with very small basins that can be
expected occasionally beyond E, capsize will be inevitable once we hit this region.
There is, however, some possibility of steady-state capsize before this. As we have
shown recently for the case of ¢ =0 at lower w, the jump to resonance can be
indeterminate (Thompson & Soliman 1991; Stewart & Ueda 1991) due to saddle-
node A lying on a fractal basin boundary.

In the light of this, we have shown by hatching the boundaries at which we would
expect steady-state capsize. At the present w = 0.85, we know from earlier studies at
G = 0 that on the F axis fold A is determinate and safe, in the sense that the jump
to resonance will always restabilize on the fundamental resonant oscillation between
B and C. Capsize will subsequently occur at the jump from crisis E. Meanwhile, at
the large left-hand bulge of arc A, where ¢ & —9F, the jump from A is determinate
and unsafe with a guaranteed jump out of the potential well to large x and capsize.

Indeterminate jumps from fold A can be expected when E is close to, but beyond
A, giving us the hatched regions terminating at points T. These points correspond to
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(b)

0.09

Figure 5. Erosion of the safe basin of non-capsizing starts for equation (36) with g = 0.1 and
o = 0.85. Each portrait has the abscissa —0.8 < z(0) < 1.2 and the ordinate —1.0 < #(0) < 1.0.
Sequence (a) corresponds to the control ray G = 5F, sequence (b) to the ray G = —5F. All values
indicated are F'.

global bifurcations at which there is a heteroclinic tangency between the resonant
saddle and the hill-top saddle: they have not been located in the present
investigation, and their positions on the diagram are purely schematic. Escape in the
vicinity of the ¢ axis is likewise unexplored.

The asymmetry of figure 3, and in particular the left hand bulge of fold A, implies
that a biased boat capsizes more easily under steady state conditions if ¥ and ¢ are
of the same sign, corresponding to wind and wave in the same direction.

3.2. Transient capsize under direct and parametric forcing

We have emphasised in earlier papers (Rainey et al. 1990, 1991; Thompson et al.
1990 ; McRobie & Thompson 1990 ; Thompson 1991) that naval architects should pay
more attention to capsize under transient, rather than steady-state conditions. A
short train of regular waves close to the roll frequency can be seen as a worst-case
excitation scenario: and the rapid erosion of the safe basin of attraction at a well-
defined wave magnitude suggests that this could be used to define a valuable ‘index
of capsizability ’ for a hull form. The results can be usefully summarized on a transient
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Figure 6. Integrity diagrams showing the variation of the normalized area of the safe basin for the
two loading rays of figure 5. Steady-state capsize, corresponding to the final crisis £, would occur
at the values of F¥ indicated. ,G=+5F; ———, G=—5F.

capsize diagram (Rainey & Thompson 1991) showing the régime of potential capsize
on a graph of wave height against wave frequency.

The conclusions of these earlier studies were shown to be robust against the precise
forms of the damping and GZ characteristics (Lansbury & Thompson 1990 ; Soliman
1990; Soliman & Thompson 1991), but no examination has yet been made of the
effect of additional parametric excitation. For this reason it is of interest to examine
the safe basins of attraction of equation (36) as we simultaneously increase G and F'.

Figure 5 shows the evolution of the safe basin as the excitation is increased
along the two rays of figure 3: figure 5a for G = +5F, and 5b for G = —5F. The
abscissa of each phase portrait is the initial value of the coordinate, x(0), and the
ordinate is the initial value of its velocity, #(0). Starts in the black basin settle onto
one or more safe finite attractors leaving the boat in a condition of steady-state
rolling, while starts in the white lead to capsize. The sudden striation of the safe
basin corresponds to the phenomenon of basin erosion by incursive fractals that we
discovered in our earlier work under direct excitation (Thompson 1989; Thompson
& Soliman 1990). Subsequent basin erosion studies of ship capsize have been made
by Falzarano et al. (1992) and Kan et al. (1990, 1991). General descriptions of fractal
basin boundaries are given by McDonald et al. (1985) and Moon (1987): and our
recent studies have gone a long way towards explaining the sudden erosion in terms
of a heteroclinic tangling of invariant manifolds (Soliman & Thompson 1992).

Plotting the area of the safe basin, normalized to unity at F = 0, gives the integrity
diagrams (Soliman & Thompson, 1989) of figure 6. These preserve the ‘Dover cliff’
form of our earlier investigations, showing that our previous conclusions hold good
for the very extreme conditions (heading into very oblique waves, for example)
implied by the strong parametric excitation of ¢/ = £5F.

3.3. Escape from a potential well wnder direct and parametric forcing

Figure 7 shows the bifurcation diagram for the sin/sin equation (46) which
contrasts markedly with the corresponding figure 3 for the cos/sin equation (36).
Once again there is invariance under ¥ ——F, (¢ ——(, and the sketched wells identify
the forcing features of the two distinct quadrants. It is particularly interesting to
observe that it is very difficult to make the particle escape from the well by vibrating
it along a negative gradient, corresponding to /' and ¢ having the same sign. Along
the ray G = 5F, for example, there is no steady-state escape in the region covered by
this diagram (Soliman 1992).
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Figure 7. Bifurcations governing the escape from a cubic potential well under direct and parametric
excitation, based on equation (46) with # = 0.1 and w = 0.85. The dot screen indicates the area of
no main-sequence attractor.

This interesting suppression of escape under direct and parametric forcing is being
examined in current research. Although it is not observed in the case of cos/sin
forcing, it may arise once this 90° phase separation is relaxed. Such a relaxation
would be experienced by a boat in cross-seas. If, for example, the boat encountered
two wave trains, one beam-on, and one head-on, the latter would provide parametric
excitation only, at any arbitrary phase to the beam excitation.

J.M.T.T. gratefully acknowledges the award of a Senior Fellowship by the Science and
Engineering Research Council of the United Kingdom.

Appendix. A systematic approximation scheme

The formulation in §2 assumes that the water surface in the vicinity of the boat
is straight and the pressure rises linearly with distance from it : the pressure gradient,
in other words, is assumed to be everywhere the same (g,), in both magnitude and
direction. This is intuitively a good first-order approximation for our case of a boat
of small cross-section. In this Appendix we explore that approximation sys-
tematically, by retaining the true spatial variations in the pressure gradient, and
evaluating the leading order terms in the force and moment on the hull, in the
limiting case of small boat cross-section.

A 1. The pressure equation

The uniform pressure-gradient g, is the first term in the full pressure expression

plgex—0¢/0—0.5V¢ V]

where x is a position relative to the boat and Ve is the water velocity (in the absence
of the boat, of course), as seen in our non-rotating (z, y) reference frame moving with
a water particle on the surface at the boat’s location, at which point ¢ = V¢ = 0.
Notice that in this Appendix we use the conventional symbol ¢ for the velocity
potential, there being here no confusion with its earlier use as the wave slope.
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Figure 8. Contours of the velocity potential and the flow field in the ‘rocking mode’ generated
by the circular harmonic ¢ = 7?sin 26.

That this classical irrotational-flow pressure formula holds in our unusual
unsteadily accelerating reference frame may be seen from its derivation given by
Lighthill (1986) in his §6.1. The frame acceleration g, merely adds to his equation
(175) and transforms the absolute velocity there to the velocity seen in the
accelerating frame. The subsequent argument then proceeds unchanged, and g,
emerges as above from his equation (178), with Lighthill’s arbitrary constant f being
zero by choice of ¢ = 0 at the location of the boat.

A 2. Rocking and bending modes

To proceed with the systematic approximation scheme, we expand the velocity
potential ¢ in the standard manner as an infinite series of circular harmonics
(Batchelor 1967, equation 2.10.5), with origin at the boat. Successive harmonics give
potentials which grow with successively higher powers of distance from the boat, and
thus allow the leading order terms in the force and moment on it to be identified, in
the limiting case of small boat cross-section. The two lowest-order circular harmonics
are those of the second degree (given that ¢ = V¢ = 0 at the origin), and, if they are
aligned with the water surface at the boat at all times, describe respectively the
rocking and bending of the surface.

The rocking mode, given in polar coordinates by ¢ = r*sin 26, is illustrated in
figure 8, where the arrows show the water velocity (as seen in our moving reference-
frame, of course), and the contours are those of the velocity potential, ¢. The bending
mode is exactly the same, but rotated through 45°, so that the velocity at the surface
is tangential to it. Now the velocities increase with the distance from the boat, and
the velocity potentials with the square of the distance, so from the above equation,
the pressure must also increase with the square of the distance.
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Table L. Powers of the boat’s beam in the terms of the equations of motion. The extra terms derived
in the Appendix are shown in brackets

parametric direct roll

inertia stiffness excitation excitation coupling
roll 4th 3rd 3rd (4th) 4th (4th) -
heave 3rd 2nd 2nd (3rd) — (3rd) 2nd

A 3. Orders of the roll moments

It follows that the roll moment produced will be proportional to the fourth power
of the beam of the boat: twice for this basic pressure-law, once for the wetted length
of hull circumference, and once for the lever arm. Moreover, since the pressure fields
are partly port-starboard symmetric, and partly antisymmetric, the excitation will
be both parametric and direct, as shown in the first row of table 1, which gives the
order of the existing terms in the roll equation, for comparison.

As can be seen, the new terms (shown bracketed) are of the same order in the boat’s
beam as the existing ones, and so cannot be ignored in the limiting case of small boat
cross-section. Unless, that is, the limiting process is taken so far that third-order
terms dominate the fourth-order ones. But that would imply that inertia forces were
negligible compared with stiffness forces, in other words that the boat is so small that
its roll period is much less than the wave period. Since we are assuming the two
periods to be comparable, we are implicitly not carrying the limiting process that far,
and thus need to retain both third and fourth order terms.

A 4. Relative phasing of the excitations

In view of the importance of the phasing of the direct and parametric excitation,
established in §3.3, it is interesting to consider the phasing of the new excitation
terms. In small waves the dominant pressure term will be that proportional to ¢,
from the 0¢/0f term in the above equation, because it is directly proportional to
waveheight, whereas the other terms are proportional to waveheight squared. Thus
in small waves the rocking mode produces a port-starboard antisymmetric pressure
field and thus a direct roll excitation, whereas the bending mode produces a
port—starboard symmetric pressure field and a parametric roll excitation (and a
surface curvature, caused by higher-order water motions allowing the large
hydrostatic pressure-gradient to cancel the surface pressure anomaly).

Now the rocking velocity is at a peak at a wave crest or trough, and thus the
associated pressure is at a peak at maximum wave slope. The bending velocity, on
the other hand, is at a peak at maximum wave slope, and thus its associated pressure
is at a peak at a wave crest or trough. This is also true of the existing direct and
parametric excitation terms, so the new excitations exactly preserve the crucial 90°
phase difference.

A 5. Effect of the hull form

It is also interesting to see how the new direct excitation compares with the
existing one, for various hull forms. Wide, shallow-draught forms will clearly follow
the water surface most closely (since they are effectively getting the same treatment
as the surface layer of water particles), implying that the new direct excitation term
is then cancelling the existing one. When the beam is reduced to twice the draught,
a box-section hull (or indeed a semicircular one) gets zero direct excitation from our
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new pressure fields by symmetry, so the existing direct excitation term is unaffected.
When the beam is much less than the draught, the new direct excitation term
changes sign, and so must augment, rather than cancel, the existing one.

A 6. Orders of the heave forces

The second row of table 1 gives the order of the terms in the heave equation, to
which similar arguments apply, except that heave has the dimensions of length,
unlike roll, so that for comparison it is necessary to consider heave in relation to
beam, rather than heave itself. This puts an extra power of the beam in the inertia,
stiffness, and parametric excitation terms.

As can be seen, the new terms are again comparable with the old ones, just as in
roll. This time, however, we are applying a ‘static balance’ assumption (see §2.5),
which requires the dominance of stiffness terms over inertial ones, and is thus neatly
met by allowing the limiting process to go far enough for second-order terms to
dominate over third-order terms. If this is done, then the new terms can be seen to
be immaterial.

The dominance of heave stiffness over heave inertia is equivalent to the heave
excitation being at frequencies well below heave resonance. Thus once the excitation
frequencies become comparable with the heave resonant frequency, it is no longer
justifiable to ignore third-order terms, and thus in particular no longer justifiable to
take the heave excitation as zero, which it would be to second order.
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